NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain.

نویسندگان

  • Bruno Bühler
  • Jin-Byung Park
  • Lars M Blank
  • Andreas Schmid
چکیده

Styrene can efficiently be oxidized to (S)-styrene oxide by recombinant Escherichia coli expressing the styrene monooxygenase genes styAB from Pseudomonas sp. strain VLB120. Targeting microbial physiology during whole-cell redox biocatalysis, we investigated the interdependency of styrene epoxidation, growth, and carbon metabolism on the basis of mass balances obtained from continuous two-liquid-phase cultures. Full induction of styAB expression led to growth inhibition, which could be attenuated by reducing expression levels. Operation at subtoxic substrate and product concentrations and variation of the epoxidation rate via the styrene feed concentration allowed a detailed analysis of carbon metabolism and bioconversion kinetics. Fine-tuned styAB expression and increasing specific epoxidation rates resulted in decreasing biomass yields, increasing specific rates for glucose uptake and the tricarboxylic acid (TCA) cycle, and finally saturation of the TCA cycle and acetate formation. Interestingly, the biocatalysis-related NAD(P)H consumption was 3.2 to 3.7 times higher than expected from the epoxidation stoichiometry. Possible reasons include uncoupling of styrene epoxidation and NADH oxidation and increased maintenance requirements during redox biocatalysis. At epoxidation rates of above 21 micromol per min per g cells (dry weight), the absence of limitations by O(2) and styrene and stagnating NAD(P)H regeneration rates indicated that NADH availability limited styrene epoxidation. During glucose-limited growth, oxygenase catalysis might induce regulatory stress responses, which attenuate excessive glucose catabolism and thus limit NADH regeneration. Optimizing metabolic and/or regulatory networks for efficient redox biocatalysis instead of growth (yield) is likely to be the key for maintaining high oxygenase activities in recombinant E. coli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase.

Pseudomonas sp. VLB120 uses styrene as a sole source of carbon and energy. The first step in this metabolic pathway is catalyzed by an oxygenase (StyA) and a NADH-flavin oxidoreductase (StyB). Both components have been isolated from wild-type Pseudomonas strain VLB120 as well as from recombinant Escherichia coli. StyA from both sources is a dimer, with a subunit size of 47 kDa, and catalyzes th...

متن کامل

Biocatalytic synthesis of gold nanoparticles with cofactor regeneration in recombinant Escherichia coli cells.

Here we report the enzymatic synthesis of gold nanoparticles (Au NPs) by an engineered Escherichia coli harboring an NADH cofactor regeneration system coupled with glycerol dehydrogenase, which can be triggered by the addition of exogenous glycerol.

متن کامل

Chiral alcohol production by NADH-dependent phenylacetaldehyde reductase coupled with in situ regeneration of NADH.

Phenylacetaldehyde reductase (PAR) produced by styrene-assimilating Corynebacterium strain ST-10 was used to synthesize chiral alcohols. This enzyme with a broad substrate range reduced various prochiral aromatic ketones and beta-ketoesters to yield optically active secondary alcohols with an enantiomeric purity of more than 98% enantiomeric excess (e.e.). The Escherichia coli recombinant cells...

متن کامل

Enhanced Expression of Recombinant Activin A in Escherichia coli by Optimization of Induction Parameters

Activin A is a member of the transforming growth factor β super family. Because of its extensive clinical usages, its recombinant production is beneficial. In this study, activin A was expressed in E. coli using the pET 21a expression vector. The optimization of the activin A production in E. coli was done by using the response surface methodology (RSM). At this stage, the effect of IPTG and la...

متن کامل

Expression and Secretion of Human Granulocyte Macrophage-Colony Stimulating Factor Using Escherichia coli Enterotoxin I Signal Sequence

With the aim of the secretion of human granulocyte macrophage-colony stimulating factor (hGM-CSF) in Escherichia coli, hGM-CSF cDNA was fused in-frame next to the signal sequence of ST toxin (ST-I) of exteroxigenic E. coli, containing 53 or 19 amino acids of signal peptide. The fused STsig::hGM-CSF coding fragments were inserted into a T7-based expression plasmid. The recombinant plasmids were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 74 5  شماره 

صفحات  -

تاریخ انتشار 2008